Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
World J Clin Cases ; 11(19): 4635-4639, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37469722

RESUMO

BACKGROUND: Congenital glaucoma associated with Roberts syndrome (RS) is an unusual and unique condition. No previous report describes this association. A multidisciplinary approach including molecular studies were conducted to reach the final diagnosis. CASE SUMMARY: We present a rare case of a 1-wk-old male with RS associated with bilateral congenital glaucoma, left ectopic kidney, and left-hand rudimentary digits. A comprehensive approach was applied by which bilateral non-penetrating glaucoma surgery was performed with good control of intraocular pressure for more than 6 mo. Cytogenetic and molecular testing were conducted and revealed normal measurements. CONCLUSION: This report described a case of a male baby with clinical features of RS but with a negative molecular analysis, presenting with left-hand rudimentary digits, bilateral congenital glaucoma, and left ectopic kidney. To the best of our knowledge, this is the first case reported with phocomelia, bilateral congenital glaucoma, and unilateral ectopic kidney.

2.
Mol Genet Genomic Med ; 11(6): e2177, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37002187

RESUMO

OBJECTIVE: Roberts syndrome (RBS), also known as Roberts-SC phocomelia syndrome, is a rare autosomal recessive developmental disorder caused by mutations in the ESCO2 gene. Cardinal clinical manifestations are pre- and postnatal growth retardation and craniofacial and limb malformations. Here, we report RBS in a Chinese adolescent with novel biallelic ESCO2 variations and complex cerebrovascular diseases. METHODS: Medical history, neurological examinations, neuroimaging, and pathology were collected in the proband and the family. Whole exome sequencing (WES) with copy number variation analysis was performed to screen for genetic variations. RESULTS: The clinical features of the proband were craniofacial and limb malformations together with complex cerebrovascular diseases. She suffered ischemic stroke at 6 years old and died of cerebellar hemorrhage secondary to an aneurysm at 13 years old. Besides, neuroimaging showed the triad of leukoencephalopathy, calcifications, and cysts. Brain histopathology revealed angiomatous changes and perivascular cysts suggesting chronic small cerebral vasculopathy. Whole exome sequencing (WES) identified novel biallelic variations in the ESCO2 gene (c.1220A>T, p.H407L and c.1562delC, p.A521fs). CONCLUSIONS: We describe complex cerebrovascular diseases in Roberts syndrome caused by novel ESCO2 biallelic variations. This case expands not only the cerebral involvement in Roberts syndrome but also the disease spectrum of the neuroimaging triad with leukoencephalopathy, calcifications, and cysts.


Assuntos
Acetiltransferases , Transtornos Cerebrovasculares , Proteínas Cromossômicas não Histona , Anormalidades Craniofaciais , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/genética , Humanos , Feminino , Adolescente , Acetiltransferases/genética , Proteínas Cromossômicas não Histona/genética , População do Leste Asiático , Transtornos Cerebrovasculares/genética
3.
Front Genet ; 14: 1286489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288163

RESUMO

ESCO2 spectrum disorder is an autosomal recessive developmental disorder characterized by growth retardation, symmetrical mesomelic limb malformation, and distinctive facies with microcephaly, with a wide phenotypic continuum that ranges from Roberts syndrome (MIM #268300) at the severe end to SC phocomelia (MIM #269000) at the milder end. ESCO2 encodes a 601-amino acid protein belonging to the Eco1/Ctf7 family of acetyltransferases that is involved in the establishment of sister chromatid cohesion, which is essential for accurate chromosome segregation and genomic stability and thus belongs to a group of disorders called "cohesinopathies". We describe a 15-year-old Malaysian female who presented with the characteristic triad of ESCO2 spectrum disorder, with an equivocal chromosomal breakage study and normal karyotyping findings. She was initially suspected to have mosaic Fanconi anemia but whole exome sequencing (WES) showed a likely pathogenic homozygous splice variant c.955 + 2_955+5del in the ESCO2 gene. During the 15-year diagnostic odyssey, she developed type 2 diabetes mellitus, primary ovarian insufficiency, increased optic cup-to-disc ratio with tortuous vessels bilaterally, and an evolving but distinct facial and skin hypopigmentation phenotype. Of note, there was an absence of learning disabilities. Our findings provide further evidence for ESCO2 spectrum disorder in an Asian child and contribute to defining the clinical and radiographic spectrum.

4.
G3 (Bethesda) ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35736360

RESUMO

Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Acetiltransferases/genética , Proteínas de Ciclo Celular/genética , Cromátides , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Ciclinas/genética , Humanos , Linfócitos Nulos , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
SAGE Open Med Case Rep ; 10: 2050313X221094077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495290

RESUMO

Roberts syndrome is a rare genetic disorder characterized by symmetrical reductive limb malformation and craniofacial abnormalities. It is caused by mutation in the "Establishment of cohesion 1 homolog 2" genes, resulting in the loss of acetyltransferase activities and manifesting as premature centromere separation in metaphase chromosomes. The affected individual grows slowly during pregnancy and after birth with associated mild to severe intellectual impairment. We present a 35-year-old multiparous Nigerian lady who had emergency cesarean section at 35 weeks of gestation following abruptio placentae with a live fetus. The baby had poor Apgar score at birth and died shortly afterward. Tetraphocomelia was detected on prenatal ultrasound done at about 24 weeks of gestation with other features sonographically normal. However, clinical diagnosis of severe variant of Roberts syndrome with tetraphocomelia, growth restriction, and craniofacial abnormalities were noted at birth. This case exhibits a very rare variant of Roberts syndrome with tetraphocomelia, intrauterine growth restriction, and craniofacial abnormalities. It also highlights the crucial role of detailed clinical examination and the inherent challenges in making cytogenetic diagnosis in low-income countries.

6.
Cell Cycle ; 21(5): 501-513, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34989322

RESUMO

Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) are severe developmental maladies that arise from mutation of cohesin (including SMC3, CdLS) and ESCO2 (RBS). Though ESCO2 activates cohesin, CdLS and RBS etiologies are currently considered non-synonymous and for which pharmacological treatments are unavailable. Here, we identify a unifying mechanism that integrates these genetic maladies to pharmacologically-induced teratogenicity via thalidomide. Our results reveal that Esco2 and cohesin co-regulate the transcription of a component of CRL4 ubiquitin ligase through which thalidomide exerts teratogenic effects. These findings are the first to link RBS and CdLS to thalidomide teratogenicity and offer new insights into treatments.


Assuntos
Síndrome de Cornélia de Lange , Talidomida , Acetiltransferases/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Anormalidades Craniofaciais , Proteínas de Ligação a DNA/genética , Síndrome de Cornélia de Lange/genética , Ectromelia , Humanos , Hipertelorismo , Ligases/genética , Mutação , Receptores de Interleucina-17 , Talidomida/efeitos adversos , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
7.
BMC Med Genomics ; 15(1): 16, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093090

RESUMO

BACKGROUND: Roberts syndrome (RBS) is a rare autosomal recessive disorder caused by variations in the ESCO2 gene; however, prenatal diagnosis of RBS has never been reported in Chinese families. Additionally, fetal-specific phenotypic characteristics associated with ESCO2 variants have not been reported. CASE PRESENTATION: A fetus in a healthy, nonconsanguineous Chinese family with multiple serious congenital malformations was diagnosed prenatally. Two consecutive fetuses in this family presented with tetraphocomelia, growth restriction, cleft lip and palate bilaterally, and other abnormalities. The main phenotypic characteristics of this case were strongly suspected to be associated with RBS. Finally, whole exome sequence analysis revealed the insertion of a homozygous base pair in exon 6 of the ESCO2 gene (NM_001017420.3, c.1111insA, NP_001017420.1, p.Thr371fs). Both of the couples were heterozygous carriers for this variant. CONCLUSION: We are the first to report a prenatal case of RBS diagnosed in a Chinese family. Here, we have confirmed that the rare variant is a definite pathogenic variant, and we provide detailed phenotypic characteristics for the prenatal diagnosis of RBS due to this causative variant.


Assuntos
Fenda Labial , Fissura Palatina , Acetiltransferases/genética , China , Proteínas Cromossômicas não Histona/genética , Fenda Labial/genética , Fissura Palatina/genética , Anormalidades Craniofaciais , Ectromelia , Feminino , Humanos , Hipertelorismo , Mutação , Gravidez , Diagnóstico Pré-Natal , Sequenciamento do Exoma
8.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897432

RESUMO

Roberts syndrome (RBS) is a multispectrum developmental disorder characterized by severe limb, craniofacial, and organ abnormalities and often intellectual disabilities. The genetic basis of RBS is rooted in loss-of-function mutations in the essential N-acetyltransferase ESCO2 which is conserved from yeast (Eco1/Ctf7) to humans. ESCO2/Eco1 regulate many cellular processes that impact chromatin structure, chromosome transmission, gene expression, and repair of the genome. The etiology of RBS remains contentious with current models that include transcriptional dysregulation or mitotic failure. Here, we report evidence that supports an emerging model rooted in defective DNA damage responses. First, the results reveal that redox stress is elevated in both eco1 and cohesion factor Saccharomyces cerevisiae mutant cells. Second, we provide evidence that Eco1 and cohesion factors are required for the repair of oxidative DNA damage such that ECO1 and cohesin gene mutations result in reduced cell viability and hyperactivation of DNA damage checkpoints that occur in response to oxidative stress. Moreover, we show that mutation of ECO1 is solely sufficient to induce endogenous redox stress and sensitizes mutant cells to exogenous genotoxic challenges. Remarkably, antioxidant treatment desensitizes eco1 mutant cells to a range of DNA damaging agents, raising the possibility that modulating the cellular redox state may represent an important avenue of treatment for RBS and tumors that bear ESCO2 mutations.


Assuntos
Ectromelia , Hipertelorismo , Proteínas de Saccharomyces cerevisiae , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Anormalidades Craniofaciais , Ectromelia/genética , Ectromelia/metabolismo , Ectromelia/patologia , Humanos , Hipertelorismo/genética , Hipertelorismo/metabolismo , Hipertelorismo/patologia , Proteínas Nucleares/genética , Oxirredução , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Fetal Pediatr Pathol ; 41(3): 396-402, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33026893

RESUMO

Background: Roberts syndrome is a genetic disorder characterized by tetra-phocomelia with abnormalities of ESCO2. We report a male stillborn with tetra-phocomelia and no ESCO2 mutation. Case report: Pre- and post-natal imaging and autopsy findings included schizencephaly, phocomelia of four limbs, micrognathia, oligodactyly, and cardiopulmonary malformations. Microcephaly on pre-natal imaging was not confirmed by autopsy examination. Karyotype, prenatal chromosome microarray and ESCO2 gene testing were normal. Conclusion: Given the various skeletal anomalies found on autopsy and imaging evaluations, at least phenotypically, our case appeared to conform into Roberts syndrome spectrum. Since the infant did not have the mutation associated with this disorder, this infant could be labeled as the first report of a pseudo-Roberts syndrome because many of his phenotypic anomalies are characteristic of Roberts syndrome in absence of the ESCO2 gene mutation.


Assuntos
Anormalidades Craniofaciais , Ectromelia , Hipertelorismo , Acetiltransferases/genética , Proteínas Cromossômicas não Histona/genética , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Feminino , Humanos , Hipertelorismo/complicações , Hipertelorismo/diagnóstico , Hipertelorismo/genética , Lactente , Cariotipagem , Masculino , Gravidez
10.
Am J Med Genet A ; 182(11): 2793-2796, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783269

RESUMO

Roberts syndrome (also known as Roberts-SC phocomelia syndrome) is an autosomal recessive developmental disorder, characterized by pre- and postnatal growth retardation, limb malformations including bilateral symmetric tetraphocomelia or mesomelia, and craniofacial dysmorphism. Biallelic loss-of-function variants in ESCO2, which codes for establishment of sister chromatid cohesion N-acetyltransferase 2, cause Roberts syndrome. Phenotypic spectrum among patients is broad, challenging clinical diagnosis in mildly affected individuals. Here we report a 3-year-old boy with a mild phenotype of Roberts syndrome with bilateral elbow contractures, humeroradial synostosis, mild lower limb disparity, and facial dysmorphism. Trio whole-exome sequencing identified the novel biallelic splice variant c.1673+1G>A in ESCO2 in the patient. Aberrant ESCO2 pre-mRNA splicing, reduced relative ESCO2 mRNA amount, and characteristic cytogenetic defects, such as premature centromere separation, heterochromatin repulsion, and chromosome breaks, in patient cells strongly supported pathogenicity of the ESCO2 variant affecting one of the highly conserved guanine-thymine dinucleotide of the donor splice site. Our case highlights the difficulty in establishing a clinical diagnosis in individuals with minor clinical features of Roberts syndrome and normal intellectual and social development. However, next-generation sequencing tools allow for molecular diagnosis in cases presenting with mild developmental defects.


Assuntos
Acetiltransferases/genética , Proteínas Cromossômicas não Histona/genética , Contratura/congênito , Anormalidades Craniofaciais/patologia , Ectromelia/patologia , Cotovelo/patologia , Úmero/anormalidades , Hipertelorismo/patologia , Mutação , Splicing de RNA , Rádio (Anatomia)/anormalidades , Sinostose/patologia , Pré-Escolar , Contratura/complicações , Contratura/genética , Contratura/patologia , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/genética , Ectromelia/complicações , Ectromelia/genética , Homozigoto , Humanos , Úmero/patologia , Hipertelorismo/complicações , Hipertelorismo/genética , Masculino , Fenótipo , Rádio (Anatomia)/patologia , Sinostose/complicações , Sinostose/genética
11.
J Pediatr Genet ; 9(1): 58-62, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31976146

RESUMO

Roberts syndrome is a rare autosomal recessive genetic disease. In this report, we report a Brazilian patient with a rare ESCO2 variant. The patient manifested a broad range of clinical findings including the significant, bilateral shortening of the extremities. He deteriorated and passed away at 20 days of age. High-resolution GTG-banded karyotype showed lack of centromeric constriction in some chromosomes, premature centromere separation in others, and repulsion of the heterochromatin regions. Molecular analysis of the ESCO2 gene revealed a deletion of 4 bp involving exon 4 in homozygosity (NM_00107420.2:c.875_878delACAG), which causes loss of ESCO2 function. We describe the clinical presentation caused by a rare ESCO2 variant.

12.
Front Pediatr ; 7: 210, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31192177

RESUMO

Baller-Gerold (BGS, MIM#218600) and Roberts (RBS, MIM#268300) syndromes are rare autosomal recessive disorders caused, respectively, by biallelic alterations in RECQL4 (MIM*603780) and ESCO2 (MIM*609353) genes. Common features are severe growth retardation, limbs shortening and craniofacial abnormalities which may include craniosynostosis. We aimed at unveiling the genetic lesions underpinning the phenotype of two unrelated children with a presumptive BGS diagnosis: patient 1 is a Turkish girl with short stature, microcephaly, craniosynostosis, seizures, intellectual disability, midface hemangioma, bilateral radial and thumb aplasia, tibial hypoplasia, and pes equinovarus. Patient 2 is an Iranian girl born to consanguineous parents with craniosynostosis, micrognathism, bilateral radial aplasia, thumbs, and foot deformity in the context of developmental delay. Upon negative RECQL4 test, whole exome sequencing (WES) analysis performed on the two trios led to the identification of two different ESCO2 homozygous inactivating variants: a previously described c.1131+1G>A transition in patient 1 and an unreported deletion, c.417del, in patient 2, thus turning the diagnosis into Roberts syndrome. The occurrence of a Baller-Gerold phenotype in two unrelated patients that were ultimately diagnosed with RBS demonstrates the strength of WES in redefining the nosological landscape of rare congenital malformation syndromes, a premise to yield optimized patients management and family counseling.

13.
Curr Biol ; 28(16): 2665-2672.e5, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30100344

RESUMO

Sister chromatid cohesion, mediated by cohesin, is required for accurate chromosome segregation [1, 2]. This process requires acetylation of cohesin subunit SMC3 by evolutionarily conserved cohesin acetyltransferases: Eco1 in budding yeast; XEco1 and XEco2 in Xenopus; and ESCO1 and ESCO2 in human [3-10]. Eco1 is recruited to chromatin through physical interaction with PCNA [11] and is degraded by the Skp1/Cul1/F-box protein complex after DNA replication to prevent ectopic cohesion formation [12]. In contrast, XEco2 recruitment to chromatin requires prereplication complex formation [13] and is degraded by the anaphase-promoting complex (APC) [14]. In human, whereas ESCO1 is expressed throughout the cell cycle, ESCO2 is detectable in S phase and is degraded after DNA replication [6, 15]. Although PDS5, a cohesin regulator, preferentially promotes ESCO1-dependent SMC3 acetylation [16], little is known about the molecular basis of the temporal regulation of ESCO2. Here, we show that ESCO2 is recruited to chromatin before PCNA accumulation. Whereas no interaction between PCNA and ESCO proteins is observed, ESCO2, but not ESCO1, interacts with the MCM complex through a unique ESCO2 domain. Interestingly, the interaction is required to protect ESCO2 from proteasomal degradation and is attenuated in late S phase. We also found that ESCO2 physically interacts with the CUL4-DDB1-VPRBP E3 ubiquitin ligase complex in late S phase and that post-replicative ESCO2 degradation requires the complex as well as APC. Thus, we propose that the MCM complex couples ESCO2 with DNA replication and that the CUL4-DDB1-VPRBP complex promotes post-replicative ESCO2 degradation, presumably to suppress cohesion formation during mitosis.


Assuntos
Acetiltransferases/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Proteínas Cromossômicas não Histona/genética , Replicação do DNA/fisiologia , Proteínas de Manutenção de Minicromossomo/genética , Acetiltransferases/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células HCT116 , Células HeLa , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Mitose/fisiologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo
14.
Exp Ther Med ; 15(2): 1702-1711, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29434756

RESUMO

Roberts syndrome (RBS; OMIM 268300) is a rare autosomal recessive disease characterized by retardation before and after birth, cranial and maxillofacial deformities, limb anomalies and intellectual disability. Mutations in the establishment of cohesion 1 homologue 2 (ESCO2) gene on chromosome 8p21.1 have been found to be causative for RBS. We describe two patients with RBS with physical deformities and ll. One is an 8-year-old Yemeni male, and the other is his 13-year-old sister. These patients were diagnosed with RBS and underwent surgeries during their first to third years of life. Here, we present the cases for the two patients, focusing specifically on their surgical management and outcomes. Additionally, by reviewing the literature on RBS, we also summarize the proper surgical interventions for this rare disease. This paper describes the long-term follow-up of two patients with severe deformities who benefitted from corrective surgeries. The findings of this study indicate that patients who survive infancy and reach adulthood, even patients who present with severe disease symptoms, can benefit from corrective surgeries and lead better lives.

15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-807169

RESUMO

Roberts syndrome (RBS, OMIM 268300) is a rare autosomal recessive disease, characterized by retardation before and after birth, cranial and maxillofacial deformities, limb anomalies and mental retardation, etc. Mutations in the establishment of cohesion 1 homolog 2(ESCO2) gene on the chromosome of 8p21.1 have been found to be causative for RBS.Here we systematically review this rare disease and summarize the pathogenic mechanisms and process in its treatment.

16.
Biol Open ; 6(12): 1802-1813, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29084713

RESUMO

Robert syndrome (RBS) and Cornelia de Lange syndrome (CdLS) are human developmental disorders characterized by craniofacial deformities, limb malformation and mental retardation. These birth defects are collectively termed cohesinopathies as both arise from mutations in cohesion genes. CdLS arises due to autosomal dominant mutations or haploinsufficiencies in cohesin subunits (SMC1A, SMC3 and RAD21) or cohesin auxiliary factors (NIPBL and HDAC8) that result in transcriptional dysregulation of developmental programs. RBS arises due to autosomal recessive mutations in cohesin auxiliary factor ESCO2, the gene that encodes an N-acetyltransferase which targets the SMC3 subunit of the cohesin complex. The mechanism that underlies RBS, however, remains unknown. A popular model states that RBS arises due to mitotic failure and loss of progenitor stem cells through apoptosis. Previous findings in the zebrafish regenerating fin, however, suggest that Esco2-knockdown results in transcription dysregulation, independent of apoptosis, similar to that observed in CdLS patients. Previously, we used the clinically relevant CX43 to demonstrate a transcriptional role for Esco2. CX43 is a gap junction gene conserved among all vertebrates that is required for direct cell-cell communication between adjacent cells such that cx43 mutations result in oculodentodigital dysplasia. Here, we show that morpholino-mediated knockdown of smc3 reduces cx43 expression and perturbs zebrafish bone and tissue regeneration similar to those previously reported for esco2 knockdown. Also similar to Esco2-dependent phenotypes, Smc3-dependent bone and tissue regeneration defects are rescued by transgenic Cx43 overexpression, suggesting that Smc3 and Esco2 cooperatively act to regulate cx43 transcription. In support of this model, chromatin immunoprecipitation assays reveal that Smc3 binds to a discrete region of the cx43 promoter, suggesting that Esco2 exerts transcriptional regulation of cx43 through modification of Smc3 bound to the cx43 promoter. These findings have the potential to unify RBS and CdLS as transcription-based mechanisms.

17.
Dev Dyn ; 246(11): 881-888, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28422453

RESUMO

Genetic mapping studies reveal that mutations in cohesion pathways are responsible for multispectrum developmental abnormalities termed cohesinopathies. These include Roberts syndrome (RBS), Cornelia de Lange Syndrome (CdLS), and Warsaw Breakage Syndrome (WABS). The cohesinopathies are characterized by overlapping phenotypes ranging from craniofacial deformities, limb defects, and mental retardation. Though these syndromes share a similar suite of phenotypes and arise due to mutations in a common cohesion pathway, the underlying mechanisms are currently believed to be distinct. Defects in mitotic failure and apoptosis i.e. trans DNA tethering events are believed to be the underlying cause of RBS, whereas the underlying cause of CdLS is largely modeled as occurring through defects in transcriptional processes i.e. cis DNA tethering events. Here, we review recent findings described primarily in zebrafish, paired with additional studies in other model systems, including human patient cells, which challenge the notion that cohesinopathies represent separate syndromes. We highlight numerous studies that illustrate the utility of zebrafish to provide novel insights into the phenotypes, genes affected and the possible mechanisms underlying cohesinopathies. We propose that transcriptional deregulation is the predominant mechanism through which cohesinopathies arise. Developmental Dynamics 246:881-888, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Doenças do Sistema Nervoso/genética , Transcrição Gênica , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Anormalidades Craniofaciais , Síndrome de Cornélia de Lange , Ectromelia , Estudos de Associação Genética , Humanos , Hipertelorismo , Doenças do Sistema Nervoso/patologia , Peixe-Zebra
18.
Am J Med Genet C Semin Med Genet ; 172(2): 171-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27091086

RESUMO

Cohesin is a multiprotein complex involved in many DNA-related processes such as proper chromosome segregation, replication, transcription, and repair. Mutations in cohesin gene pathways are responsible for human diseases, collectively referred to as cohesinopathies. In addition, both cohesin gene expression dysregulation and mutations have been identified in cancer. Cohesinopathy cells are characterized by genome instability (GIN) visualized by a constellation of markers such as chromosome aneuploidies, chromosome aberrations, precocious sister chromatid separation, premature centromere separation, micronuclei formation, and sensitivity to genotoxic drugs. The emerging picture suggests that GIN observed in cohesinopathies may result from the synergistic effects of the multiple cohesin dysfunctions. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Instabilidade Genômica/fisiologia , Aberrações Cromossômicas , Humanos , Mutação
19.
Dev Dyn ; 245(1): 7-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26434741

RESUMO

BACKGROUND: Roberts syndrome (RBS) is a rare genetic disorder characterized by craniofacial abnormalities, limb malformation, and often severe mental retardation. RBS arises from mutations in ESCO2 that encodes an acetyltransferase and modifies the cohesin subunit SMC3. Mutations in SCC2/NIPBL (encodes a cohesin loader), SMC3 or other cohesin genes (SMC1, RAD21/MCD1) give rise to a related developmental malady termed Cornelia de Lange syndrome (CdLS). RBS and CdLS exhibit overlapping phenotypes, but RBS is thought to arise through mitotic failure and limited progenitor cell proliferation while CdLS arises through transcriptional dysregulation. Here, we use the zebrafish regenerating fin model to test the mechanism through which RBS-type phenotypes arise. RESULTS: esco2 is up-regulated during fin regeneration and specifically within the blastema. esco2 knockdown adversely affects both tissue and bone growth in regenerating fins-consistent with a role in skeletal morphogenesis. esco2-knockdown significantly diminishes cx43/gja1 expression which encodes the gap junction connexin subunit required for cell-cell communication. cx43 mutations cause the short fin (sof(b123) ) phenotype in zebrafish and oculodentodigital dysplasia (ODDD) in humans. Importantly, miR-133-dependent cx43 overexpression rescues esco2-dependent growth defects. CONCLUSIONS: These results conceptually link ODDD to cohesinopathies and provide evidence that ESCO2 may play a transcriptional role critical for human development.


Assuntos
Acetiltransferases/genética , Nadadeiras de Animais/fisiologia , Osso e Ossos/fisiologia , Conexina 43/genética , Regeneração/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Acetiltransferases/metabolismo , Animais , Apoptose/genética , Proliferação de Células/genética , Conexina 43/metabolismo , Regulação da Expressão Gênica , Regulação para Cima , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
Congenit Anom (Kyoto) ; 56(4): 154-62, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26710928

RESUMO

Roberts syndrome and SC phocomelia syndrome are rare autosomal recessive genetic disorders representing the extremes of the spectrum of severity of the same condition, caused by mutations in ESCO2 gene. We report three new patients with Roberts syndrome from three unrelated consanguineous Egyptian families. All patients presented with growth retardation, mesomelic shortening of the limbs more in the upper than in the lower limbs and microcephaly. Patients were subjected to clinical, cytogenetic and radiologic examinations. Cytogenetic analysis showed the characteristic premature separation of centromeres and puffing of heterochromatic regions. Further, sequencing of the ESCO2 gene identified a novel mutation c.244_245dupCT (p.T83Pfs*20) in one family besides two previously reported mutations c.760_761insA (p.T254Nfs*27) and c.764_765delTT (p.F255Cfs*25). All mutations were in homozygous state, in exon 3. The severity of the mesomelic shortening of the limbs and craniofacial anomalies showed variability among patients. Interestingly, patient 1 had abnormal skin hypopigmentation. Serial fetal ultrasound examinations and measurements of long bones diagnosed two affected fetuses in two of the studied families. A literature review and case comparison was performed. In conclusion, we report a novel ESCO2 mutation and expand the clinical spectrum of Roberts syndrome.


Assuntos
Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Ectromelia/diagnóstico , Ectromelia/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Hipertelorismo/diagnóstico , Hipertelorismo/genética , Mutação , Fenótipo , Acetiltransferases/genética , Pré-Escolar , Proteínas Cromossômicas não Histona/genética , Consanguinidade , Análise Mutacional de DNA , Facies , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Cariotipagem , Masculino , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...